E2.5 Signals & Linear Systems

Tutorial Sheet 3 – Zero-state Responses & Convolution

(Support Lectures 4 & 5)

- 1.* Use direct integration, find the expression for:
 - a) y(t) = u(t) * u(t)
 - b) $y(t) = e^{-at}u(t) * e^{-bt}u(t)$
 - c) $y(t) = tu(t)^*u(t)$.
- 2.* Use direct integration, find:
 - a) $y(t) = \sin t \, u(t)^* u(t)$
 - b) $y(t) = \cos t u(t) * u(t)$.
- 3.* The unit impulse response of an LTI system is $h(t) = e^{-t}u(t)$. Use the convolution table, find this system's zerostate response y(t) if the input f(t) is:
 - a) u(t)
 - b) $e^{-2t}u(t)$
 - c) $\sin 3t u(t)$
- 4.** By apply the shift property of convolution, find the system's response (i.e. zero-state response) given that $h(t) = e^{-t}u(t)$ and that the input f(t) is as shown in Fig 4.1.

5.** A first-order allpass filter impulse response is given by

$$h(t) = -\delta(t) + 2e^{-t}u(t).$$

- a) Find the zero-state response of this filter for the input $e^{t}u(-t)$.
- b) Sketch the input and the corresponding zero-state response.

6.** Find and sketch $c(t) = f_1(t) * f_2(t)$ for the pairs of functions shown as follow:

7.*** Find and sketch c(t) = f(t)*g(t) for the pairs of functions shown below.

8.*** A line charge is located along the x axis with a charge density f(x). In other words, the charge over an interval $\Delta \tau$ located at $\tau = n\Delta \tau$ is $f(n\Delta \tau)\Delta \tau$. It is also known from Coulomb's law that the electrical field E(r) at a distance r from a charge q is given by:

$$E(r) = \frac{q}{4\pi\varepsilon r^2} ,$$

where ε is a constant.

Show that electric field E(x) produced by this line charge at a point x is given by

$$E(x) = f(x)*h(x)$$
, where $h(x) = \frac{q}{4\pi\varepsilon x^2}$.